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On The Mechanics of Tone Arms

Dick Pierce
Professional Audio Development

Wherein we explore some of the basic physical mechanics of tone arms.

1 INTRODUCTION
“Mechanics” is a branch of physics that explores

the behavior and analysis of moving masses and the
forces associated with these moving masses. Ap-
plying the analysis of mechanics to tone arms is
something that is an essential part of tone arm de-
sign, but is oft neglected outside of the design proc-
ess. This has lead, among other things, to a number
of myths about how tone arms behave and what con-
stitutes the crucial factors affecting their behavior.

Here are some examples:
• When calculating the mass of a tone arm,

you must add the tracking force.
• To reduce the effective mass, you should

make the counterweight less massive.
In much of the analysis below, we make some

simplifying assumptions. For example, when we
generally speak of a mass, we assume, for simplic-
ity, that all of the mass is concentrated in one point,
or at least in a region that is very small compared to
the other dimensions of the problem. We’ll also as-
sume that all structures are rigid and all bearings are
without friction. In most cases, the difference that
result from these assumptions lead to analysis results
that do not appreciably differ from physical reality,
and are thus good models of that reality.

In other case, we will include the corrections due
to masses actually occupying a large extent, and the
effects of friction, because they can affect the be-
havior of the systems we are analyzing in non-trivial
ways.

I, in no way, intended this to be a comprehen-
sive article on tone arm and turntable design. There
are plenty of sources, many of them excellent, on
various aspects of tone arm design. There are many
articles to be had on design factors to minimize
tracking error and other aspects of geometry, RIAA
preamplifier design, tone arm damping and more.

Nor do I intend to preach a particular gospel
even in the limited scope of the present topic: I am,
for example, advocating neither high arm mass or
low arm mass as being superior.

Rather, I am presenting the basic physics behind
why tone arms have the mass that they do, with the
hope that armed with this information, the reader can
better understand the factors involved. Nowhere,
necessarily, is there any information to be found
here on how to design the very best arm: rather, what
is presented is the fundamentals needed to do that
job. And also I hope that there’s enough here to al-
low the reader to separate the important wheat from
the advertising and mythological chaff that oft sur-
rounds discussions on LP playback principals.

2 A QUESTION OF UNITS
Throughout this discussion, we’ll be using the

metric system of units. More specifically, we’ll be
using the cgs system, standing for centimeters,
grams and seconds. The metric system of units al-
lows for easy and consistent units calculations. On
the other hand, the normal “imperial” units have lit-
tle logical relation to one another and are, indeed, a
source of great confusion.
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The basic unit of length or distance is the centi-
meter, abbreviated as cm. A centimeter is a little
more than 3/8 of an inch. From that, area is meas-
ured in square centimeters and volume in cubic cen-
timeters.

The basic unit of mass, a measurement of the
amount of matter, is gram. There are about 28 grams
in a dry ounce. We might find it curious that a single
cubic centimeter of water has a mass of almost pre-
cisely 1 gram. In fact, a gram was initially defined as
the mass of 1 cubic centimeter of water at its maxi-
mum density, at about 2 degrees Celsius.

Of course, we know of the unit of time, the sec-
ond.

From these basic units, we can combine them to
arrive at the other units that we’ll be needing.

When an object is moving, or changing its posi-
tion, we measure that in terms of distance per time,
or centimeters per second, or cm/s.

On the other hand, then the velocity of an object
changes, it is said to accelerate, and the acceleration
is measured in terms of the change in speed per time,
in cm s s/ / , or more conventionally, cm s/ 2 .
Earth’s gravity acts to accelerate objects at the same
rate, an acceleration of 980 2cm s/  often referred to
with the symbol g.

A force acts upon a mass to cause it to change
speed, or accelerate. Specifically, from Newton, we
have the :

F m a= ×
Force is measured in units of gram centimeters

per second squared, or g cm s/ 2 . This is a rather
cumbersome unit, so we use the units of dynes in-
stead.

Before we go further, it’s necessary to correct a
long-standing misconception about tracking force.
Since tone-arm time immemorial, tracking “force”
has been described in terms of grams. Unfortunately,
grams is a unit of mass, not of force, and the use of
units of mass to describe force is inappropriate and
leads to confusion and incorrect assumptions.

When it is said that an arm has been set up with
a “tracking force of 1 gram,” what is really meant is
that a a force is set equivalent to that of 1 gram un-
der the influence of gravity. Again, remember that:

F m a=

The acceleration of gravity is 980 2cm / sec  so
that 1 gram exerts a force of:

F g cm dynes= × =1 980 9802/ sec

So, it is more correct to talk of a tracking force
of 980 dynes rather than 1 gram. Regrettably, the
improper use of grams as a measure of tracking force
has become all-pervasive and is hard to shake. I
would suggest that we might want to invent a new
unit called the “gram-equivalent of force,” which
corresponds to the force exerted by one gram under
the influence of gravity at the earth’s surface, equal
to 980 dynes.

Conveniently, though, our choice of units and
the planet live on make the conversion rather easy. 1
gram equivalent tracking force is within 2% of 1000
dynes, making the conversion pretty easy: 1 gram is
about 1000 dynes: simple. Throughout the following
evaluation, we’ll show the tracking force in dynes
and gram-equivalent force when convenient.

One of the primary advantages of using consis-
tent dimensions and units is that it provides a means
of verifying that our work is proceeding correctly
along sound lines. We can use a method called “di-
mensional consistency” which verifies that the units
and dimensions we start with and the operations we
perform on them give us not only the correct nu-
merical results, but the correct units as well.

Let’s look at an example of dimensional consis-
tency. A spring and a mass can form a mechanical
resonant system. We are familiar with the formula
for the natural frequency of such a system:

F
M C

=
⋅

1
2π

where F is the frequency, M is the mass and C is
the compliance. Well, frequency, mass and compli-
ance don’t tell us much, what we need is frequency,
mass and compliance in what units. More specifi-
cally, the frequency is in units of Hz, or cycles per
second, mass (in this context) is in grams, and com-
pliance is in centimeters per dyne.

But how, you might ask, does putting mass and
compliance together end up in frequency? Because
of the correct use of the proper units, that’s how.

Let’s look at this in more detail. Again, mass is
in grams and compliance is in centimeters per dyne.
The product of these two, M C⋅ , combines the units
and creates a new number in units of gram centime-
ters per dyne. Well, that seems even more compli-
cated until remember the definition of a dyne: it’s a
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gram centimeter per second squared. So, in equation
form, we simply substitute the definition of a dyne:

g cm
dyne

g cm
g cm

s

⋅
=

⋅
⋅

2

Now, we can start cancelling out units that ap-
pear in both the numerator and denominator, since if
the appear as factors in both places, the result is one:
grams cancel out, centimeters cancel out, and we are
left with 1 2/ s  in the denominator. That’s the same
as having s2  in the numerator. Take the square root
of that and you have simply time, in seconds.

Replace everything that used to be under the
radical with a number in units of seconds, and we
get:

1
2π s

which is in units of “per second.” The 2π is the
number of radians per cycle. Thus, we have started
with grams and centimeters per dyne and logically
ended with cycles per second, or Hz.

If, instead of mass, you used weight (which, re-
member, is a force), you’d find that you’d end up in
some weird set of dimensions that do not make logi-
cal sense (in this case, the result would be in the re-
ciprocal of the square root of centimeter!).

By ensuring dimensional consistency and thus
correct units, we can verify that our path is correct
and we end up with results consistent with the
physical system we are dealing with. We’ll be using
dimensional analysis through this and other articles.

3 BALANCE
In most high-quality tone arms, balance and

tracking force is achieved by balancing masses rela-
tive to the pivot point. Gravity exerts forces on each
mass of the tone arm, each of these forces in turn
create their own torque around the pivot point.

m

d

Fg
pivot

Torque (designated as G) is a force around a
pivot. The amount of torque is equal to the force
times the distance from the pivot:

G F d= ×

The force, as mentioned, results from the accel-
eration of gravity on the mass:

F m g=

and g is the acceleration due to gravity,
980 2cm / sec . As an example, say the mass m is 5
grams, and the distance d between that mass and the
pivot is 20 cm (like a phono cartridge ate the end of
a tone arm). The force exerted by the mass due to
gravity is:

F g cm dynes= × =5 980 49002/ sec

and the resulting torque is:

G dynes cm dyne cm= × =4900 20 98 000,

In this case, we have a single source of torque,
resulting in an unbalanced force. An unbalanced
force means that the system will move. To achieve
balance, we must have an equal amount of torque,
but applied in the opposite direction. One way to do
this is to have a mass of equal size an equal distance
on the other side of the pivot:

m1

d1

F1
pivot

m2

d2

F2

The total, or net torque on this system then is:

G F d F dNET = −1 1 2 2

The minus sign on the second term is a result of
the torque being applied in the opposite direction.
Since m m1 2= , then F F1 2= . And since d d1 2=
then F d F d1 1 2 2= . If the two terms are equal, then
the resulting torque is zero. This is the condition
needed to achieve static balance.

Achieving static balance can be done with two
equal masses equidistant from the pivot point on
opposite sides of the pivot, but that is not the only
way. All that is required to achieve static balance is
the net sum of all torques around the pivot is zero.
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Imagine, instead, on the right side of the pivot,
we have a mass of 100 grams, but only 1 cm from
the pivot. Imagine this arrangement for a simple,
hypothetical tone arm:

cart

dcart

Fcart

cw

dcw

Fcw

The force exerted by that counterweight mass is:

F g cm dynesCW = × =100 980 98 000/ sec ,

Spaced 1 cm from the pivot point, it exerts a
torque of:

G dynes cm dyne cmCW = × =98 000 1 98 000, ,

And the force exerted by that cartridge mass is:

F g cm dynesCART = × =5 980 490/ sec

Spaced 20 cm from the pivot point, it exerts a
torque of:

G dynes cm dyne cmCART = × =490 20 98 000,

precisely equal to the torque exerted by coun-
terweight on other side of the pivot.

The sum of these two torques, then, becomes:

G dyne cm dyne cmNET = − =98 000 98 000 0, ,

The net torque is zero, thus the net forces are
zero, and thus the arm is statically balanced.

3.1 Applying Tracking Force
To apply tracking force, the arm is unbalanced

usually by moving the counterweight. This results in
an unequal application of torque by the cartridge and
the counterweight. If the counterweight is moved
inwards towards the pivot, it’s contributing torque is
now reduced resulting in a  net downwards force at
the cartridge.

Let’s look at this scenario in an analytical fash-
ion. Take our example above, only now lets place
the center of mass of the counterweight 0.8 cm from
the pivot point, rather than 1 cm. The torque it now
contributes is:

G dynes cm dyne cmCW = × =98 000 0 8 78 400, . ,

The net torque then becomes:

G dyne cm dyne cm
G dyne cm

NET

NET

= −
=

98 000 78 400
19 600

, ,
,

Then, at the stylus point, 20 cm from the pivot,
that unbalanced torque translates into a downward
force of:

F dyne cm cm
F dynes

CART

CART

= ÷
=

19 600 20
980

,

And 980 dynes is the force equivalent of 1 gram.
By moving the counterweight in a mere 2 mm (0.2
cm), we’ve generated 1 gram equivalent force of
tracking weight at the stylus.

Now, if we look at the results above, we will see
that the net forces resulting from unbalanced torque
goes as a linear function of the distance of the
counterweight:

0 0.5 1.00.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

Pivot-counterweight distance
(cm)

dynes

0
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0
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2
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4

5

This turns out to be very convenient for cali-
brating the tracking force. Imagine that the tone arm
shaft behind the pivot is threaded, and that each turn
of the thread is 1 mm apart. Similarly the counter-
weight is threaded onto this shaft. Rotating the
counterweight back and forth on the thread  moves
the counterweight towards or away from the pivot.
Each turn  moves it 1 mm. But a 1mm change in the
position of the tone arm results (in our example) of a
change in force of ½ gram equivalent (490 dynes).

Now, adjust the counterweight so that the arm is
in perfect balance. Want a gram force equivalent



tone-arm.doc The Mechanics of Tone Arms

Revised: 02-Jan-05 Page 5
Printed: 02-Jan-05

tracking weight of 1 gram? Easy, turn the counter-
weight on its thread exactly two turns, which moves
it 2 mm (0.2 cm) towards the pivot. How about 1.5
gram equivalent force? That’s three turns. The accu-
racy of the scheme depends only upon the accuracy
of the thread and the weight of the counterweight.
Both these quantities can be easily designed and
controlled during manufacturing to a degree of pre-
cision that far exceeds what’s necessary in this ap-
plication. As a result, the tracking force calibrations
on tone arms that apply tracking force by rotating a
counterweight along a thread are usually very accu-
rate, often more so than expensive, often friction-
laden tracking force gauges. This is contrary to the
popular wisdom in the high-end turntable world.

4 EFFECTIVE MASS
The subject of the effective inertial mass of tone

arms is an important one, but one which seems to be
sorely misunderstood, even by alleged “experts.” As
an example, one need only look at some of the
claims made in the popular press. One episode in
particular stands out: the head of a company making
high-quality turntables, in an infamous letter to the
editors of High Fi News and Record Review (ca
1976), stated categorically that tone arms cannot
have mass, since everything is moving around a
pivot, all that mass is really translated into moment
of inertia. And without mass, the system can’t have a
mass-compliance resonance. Unfortunately, the
author of this letter failed to get tone arms to sub-
scribe to his theory, as they have behaved before and
since in every way as if they did have mass.

This confused view of the mechanics of tone
arms does, however, serve to highlight that the
analysis of the effective mass is not necessarily a
straightforward exercise. While not necessarily just
simple linear mechanics. it is still well within the
realm of high school physics.

4.1 Moments of Inertia
Rotary motion about a pivot point obeys pre-

cisely the same physical laws as linear motion, and
can be analyzed in the same way. If a body of mass
m is moving at a velocity v, it’s kinetic energy E is:

E mv=
1
2

2

This is true whether the body is moving in a
straight line or whether it is moving in uniform cir-
cular motion around a pivot point. In the case of cir-
cular motion, we can say that the velocity v is equal
to the angular velocity ω1 and the distance from the
pivot point r:

v r= ω

Now, calculating the energy of such a body
merely requires us to use ωr in place of v:

E m r=
1
2

2 2ω

Let’s rearrange this equation slightly to give us:

E mr=
1
2

2 2ω

The quantity mr 2  is referred to as the moment of
inertia of the object, and is an important property of
all rotating masses. It’s normally designated by the
symbol I, and, for point objects of mass m that are r
distant from the center of rotation, the moment of
inertia is calculated as:

I mr= 2

and its units are in gram centimeters squared, or
g cm2 .

Now, this works fine for point masses (those
whose mass is concentrated over a distance that is
small compared to r), but tone arms aren’t made out
of such objects. Just think about the tone arm tube
itself, a tube of some material that has its mass dis-
tributed in possibly a complex fashion over the en-
tire distance between the pivot and the cartridge.
Some portions are close to the pivot, meaning that r
is small, some portions are far away, and r is large.
What is the contribution of such an extended object
to the total moment of inertia?

Well, let’s literally break the problem down and
analyze it. Pretend our tone arm tube is a uniform
tube 20 cm long weighing, say, 3 grams. If all the
mass were concentrated at the end, far from the
pivot, it’s moment of inertia would be

                                                     

1 ω is usually expressed in radians per second. A radian is the
distance around the circumference of the circle equal to the
radius of the circle. Consequently, there are 2π  radians in
each full circle or revolution.
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I g cm

I g cm

I g cm

= ×

= ×

=

3 20

3 400

1200

2

2

2

( )

, .

On the other hand, if all the mass was concen-
trated at the pivot point, it’s moment of inertia
would be 0. Halfway along, it would be

I g cm

I g cm

I g cm

= ×

= ×

=

3 10

3 100

300

2

2

2

( )

, .

But, as we know, the mass is distributed uni-
formly along the length. Let’s pretend the mass is
concentrated into 11 point masses, each spaced
every 2 cm along the arm from the pivot to the end.

Point mass number 1, 3
11

 of a gram, is at the pivot

point, point mass number 11, having the same mass
as the first, is at the end. The total moment of inertia
is simply the sum of each one:

I I I ITOTAL = + + +1 2 11Κ

The moment of inertia of mass 1 is:

I g cm g cm1
2 23

11
0 0= × =( )

while that of mass 11 is:

I g cm g cm1
2 23

11
20 109= × =( )

In fact, we can generalize and say the moment of
inertia of any segment is:

[ ]I g n cmn = × −
3

11
2 1 2( )

and that the total moment of inertia (in more
general terms and standard notation) is:

[ ]I g n cmTOTAL
n

= −
=
∑ 3

11
2 1 2

1

11
( )

working this out, we end up with a figure of
420 2g cm . We can break it up into smaller seg-
ments and see what the approximation works out to.
With 20 segments, we get 410 2g cm , 40, we end up
with 405 2g cm , 200 yields 401 2g cm . And if we

carry the experiment far enough, say dividing into
1,000,000 segments, we get something like
400 001 2. g cm .

In fact, we can also go look up in an mechanical
engineering handbook and see what the moment of
inertia is for a uniform thin hollow tube pivoted
from one end, and we find:

I ml
=

2

3

which agrees with our little approximation to a
very high degree. While we’re there, we’ll see mo-
ment of inertia calculations for all sorts of shapes of
objects. (I have in front of me a copy of Machinery’s
Handbook, published by The Industrial Press,
wherein we find a table spanning several pages il-
lustrating the moments of inertia of dozens of differ-
ent shapes and profiles).

So, for completeness, we would include these
calculations into the total. However, for simplicity,
we’ll simply confine ourselves to our simpler model.

The implications of all this are significant, in
that it tells us that the energy storage is proportional
to the mass, but to the square of the distance of that
mass from the center of rotation. We can think of
several intuitive examples of this property, Fly-
wheels, as in the simple toy gyroscope, try to have
all their mass concentrated as far from the pivot
point as possible, to maximize energy storage.

These implication has important effect on tone
arm design and performance. Let’s take our simple
tone arm from the previous example and examine
what the implications of the placement of masses
relative to the pivot have. Under the assumption that
all the portions of our tone arm are rigidly connected
together, let’s calculate the total moment of inertia.

The moment of inertia of the cartridge is:

I g cm

I g cm

I g cm

CARTt

CART

CART

= ×

= ×

=

5 20

5 400

2000

2

2

2

( )

while that for the counterweight is:

I g cm

I g cm

I g cm

CW

CW

CW

= ×

= ×

=

100 1

100 1

100

2

2

2

( )
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Hold on a second! The counterweight is 20
times the mass of the cartridge, yet its moment of
inertia is 1/20th that of the cartridge. That’s because,
as we saw above, there’s that dependency on the
square of the distance from the pivot.

Remember that the total moment is simply the
sum of each contributor, so the total is:

I I I

I g cm g cm

I g cm

TOTAL CART CW

TOTAL

TOTAL

= +

= +

=

2000 100

2100

2 2

2

What is important from this analysis is that for
most tone arms, the single largest contributor to the
total moment of inertia is the cartridge’s, not the
counterweight’s.

And let’s look at what first seems to be a com-
pletely counterintuitive result. Let’s double the mass
of the counterweight to 200 grams. But, remember,
to achieve balance, we’ll have to move it closer to
the pivot, in this case from 1 cm to 0.5 cm. Now, the
contribution to moment of inertia becomes:

I g cm

I g cm

I g cm

CW

CW

CW

= ×

= ×

=

200 0 5

200 0 25

50

2

2

2

( . )

.

And the total now becomes:

I g cm g cm

I g cm
TOTAL

TOTAL

= +

=

2000 50

2050

2 2

2

Thus, the seemingly contradictory result that
making the counterweight heavier reduces the total
moment of inertia.

4.2 And Back to Effective Mass
Well, this moment of inertia all seems very in-

teresting, but we are looking for the effective mass.
How do we convert from total moment of inertia
back to the effect mass?

The important missing part of the question is,
how do we convert back to the effective mass at the
where? The obvious answer, I hope, is at the stylus
tip, 20 cm away from the pivot.

Remember that we got to the moment of inertia
for a point mass by:

I m r= 2

What we want to know is what is the equivalent
mass m at the radius r. That’s simple (and it’s the
step that Tiffenbrun forgot to take in is incomplete
analysis). Simple re-arrange the equation so that m is
on one side. Divide both sides of the equation by r 2

and you get:

I
r

m2 =

So, in our example, the arm has a total moment
of inertia of 2100 2g cm , so the resulting effective
mass at the stylus tip, 20 cm away from the pivot,
would be:

m
g cm
cm

m g cm
cm

m grams

EFF

EFF

EFF

=

=

=

2100
20

2100
400

5 25

2

2

2

2

( )

.

And, as we see, the single largest contributor to
the total effective mass is the cartridge, not the
counterweight. Again, this is as a consequence of the
dependency on the square of the distance from the
pivot.

Let’s look at our second example, with the 200
gram counterweight:

m
g cm
cm

m grams

EFF

EFF

=

=

2050
20

5125

2

2( )
.

Again, somewhat counter-intuitively, the arm
with the heavier counterweight ended up with the
lower effective mass. Not by a lot, but it’s still a real
effect.

This then contradicts the myth that to lower the
mass of a tone arm, all elements must have their
mass reduced. It further suggests that if you need to
lower the effective mass of an arm, you’re much
better spending the effort at the end where the car-
tridge is, not near the pivot or counterweight.

4.3 Tracking Force and Effective Mass
One myth that I have heard repeatedly is that to

get the total effective mass, you must add the track-
ing force to the normal effective mass. This would
be true if and only if you got that tracking force sim-
ply by adding a mass right to the cartridge, sort of
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along the lines of the old trick of taping a penny to
the headshell.

Most high-quality tone arms achieve positive
tracking force by unbalancing the arm, as shown
above, moving the counterweight closer to the pivot
from the zero-balance position. We can calculate the
effects this has on the effective mass.

In our example, we had to move our 100 gram
counterweight to a position of 0.8 cm away from the
pivot point to achieve a 1 gram equivalent tracking
force at the stylus tip. Under that condition, the
counterweight’s contribution to the total moment of
inertia is:

I g cm

I g cm

I g cm

CW

CW

CW

= ×

= ×

=

100 0 8

100 0 64

64

2

2

2

( . )

.

The total moment of inertia becomes

I I I

I g cm g cm

I g cm

TOTAL CART CW

TOTAL

TOTAL

= +

= +

=

2000 64

2064

2 2

2

And the resulting effective mass, 20 cm away
from the stylus tip, becomes:

m g cm
cm

m grams

EFF

EFF

=

=

2064
400

516

2

2

.

So, quit contrary to the another of the popular
myths, in tone arms that achieve tracking force by
unbalancing the tone arm, the tracking force is not
added to the effective mass. In fact, dialing in the
tracking force moving the counterweight closer to
the pivot from the zero-balance state reduces the
effective tone arm mass.

Similar to the graph we saw above, we can pro-
duce a graph, given our hypothetical tone arm, of
effective mass vs tracking force:

1000 2000 3000 4000 50000

5.00

4.50

5.50

6.00

4.00

dynes

1 2 3 4 50
gram-equivalent force

Mass
grams

Tracking Force

Again, the graph shows us the counter-intuitive
effect of the mass decreasing with increasing track-
ing force, even though the dependence is small, at
best. In our example, increasing the tracking force
from 1000 to 5000 dynes, an increase of 500% or a
factor of 5, results in a reduction of mass of only
3%, a negligible change, at the worst.

4.4 A More Complete Model
We have done most of our exploration making

some simplifying assumptions: that the only objects
contributing to the effective mass are the cartridge
and the counterweight. Clearly, in practical tone
arms, there’s more than this. There is, at the very
minimum. Some sort of mounting arrangement for
the cartridge, the arm tube, and some sort of support
for the counterweight. There is also whatever object
at the pivot point that holds it all together, but, re-
member, if it’s at the pivot point, its contribution to
the effective mass is negligible

Let’s apply some practical numbers and see
what we might come up with for the effective mass
for an actual tone arm. I have available a late model
AR tone arm which is easily disassembled and
measured. Here’s the tally:
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Item Mass
g

Distance
cm*

Moment of
Inertia
g cm2

Cartridge
Mount

10.3 21 4540

Arm tube 10.8 18.7 1260
Counter
weight

87 ~4 1392

Counterweight
mount

16 6.5 225

Internal wires 0.4 22 64.5
Signal terminals 1.1 22 532

Total 125.6g 8014 g cm2

* The distance is distance from the pivot to the center of mass
of the object for objects such as the cartridge mount, or the
length of the object for the tone arm tube, internal wiring, etc.

The stylus-pivot distance of this arm is about
22.5 cm, so that the effective mass of the arm, exclu-
sive of the cartridge or its mounting hardware, is

( )
8014

22 5
158

2

2

g cm

cm
g

.
.= . This is neither a particularly

high-mass nor a particularly low-mass tone arm. If
one wanted to, say, reduce the mass of this arm,
there are several approaches. You could increase the
mass of the counterweight, getting it closer to the
pivot, but that would not do much for you, since the
counterweight contributes only 17% of the total ef-
fective mass as it is. The biggest gain would be in
reducing the amount of mass in the cartridge
mounting plate. With some careful shaving, I would
see removing 5 grams of material here. That’s 5
grams in effective mass, since it’s at the end of the
tone arm.

Tone arms with masses approaching 5 grams or
less are rare and often involve some significant
compromises in strength and rigidity. Those with
masses much exceeding 20 grams significantly limit
the range of cartridges that can be used to ones with
low compliances.

4.5 Arm Mass and Resonance
The significance of the effective mass in relation

to the stylus compliance comes from the fact that the
two, together, form a classic mechanical resonant
system. It is the combination of the effective mass
and the compliance that determine the frequency of
that resonance:

F
M CEFF STYLUS

=
⋅

1
2π

where M EFF  is the total effective mass of the
arm-cartridge system, CSTYLUS  is the mechanical
compliance of the stylus suspension, and F  is the
resonant frequency of system. As long as we main-
tain consistent units, we can simply plug the num-
bers in and out comes the resonant frequency in
Hertz.

Looking at our example arm above, the AR,
combined with a 5 g cartridge gives a total effective
mass of 21g. Looking at typical moving-magnet
compliance, we find compliance figures of
10 10 6× − cm dynes/ , that is for every dyne of force
applied to the stylus, it will deflect 10 millionths of a
centimeter as a result. That means, for example, that
if the tracking force is set to 1 gram equivalent force,
or 980 dynes, the stylus deflection will be

x C F

x cm dyne dyne

x cm

= ×

= × ×

= ×

−

−

10 10 980

9 8 10

6

3

/

.

or about 0.1 mm.

The resonant frequency of such a system will be:

F
g cm dyne

F
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F
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F s
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⋅ ×
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⋅ ×
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2 144 10
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2

1

π

π

π

. /

. / /

.

or 11 Hz.
11 Hz is about ideal for a cartridge/arm resonant

frequency, being just about in the “ideal” range of 7
to 12 Hz. If the effective mass of the arm/cartridge
were substantially higher, say, 42 grams, the reso-
nant frequency would be lower, less than 8 Hz. One
the other hand, using one of the very high-
compliance cartridges, one with a compliance of,
say, 40 10 6× − cm dyne/ , would lead to a lower
resonance as well, in this case, about 5.5 Hz.

Why the resonance should be within these con-
fines is beyond the scope of this article, but suffice it
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to say that we are bounded at the top end by the risk
of intruding into the musical content of the record,
and at the low end by mechanical interference due to
external vibrations, mis-tracking due to warp-
induced movements, and so on.

5 CONCLUSION
We’ve investigated two area of fundamental

mechanics as they apply to tone arm properties: the
application of lever arms and torque to determine
tracking weight in statically weight-balanced tone
arms and the use of concepts of moment of inertia in
evaluating the effective mass of tone arms. We have
seen that, especially in the evaluation of effective
mass, some of the intuitive assumptions are wrong
regarding how each element of the arm contributes
to the effective mass. For example, we see that even
though it is the most massive object in a tone arm,
the counterweight, is actually only a minor con-
tributor to the total moving mass. One of the most

important concepts to be grasped is that tracking
force is not effective mass.

We explored how the cartridge mass and stylus
suspension compliance interact to form a resonant
system and how that resonance can be calculated.

We have also seen that the claim that “the
tracking force must be added to the effective mass is
simply not supportable.

The LP still enjoys a strong and loyal following
in some niche markets. While it has clearly dropped
out of the mainstream of the music delivery market,
there are those that are devoted to its survival. From
a practical standpoint, there are still many recordings
and significant performances that are simply not
available on alternate media (CD, cassette, etc.),
meaning that there will, for some time to come, be a
need for correct playback of these records. I hope
that this discussion, a better understanding of those
principals underlying record reproduction can be
obtained.
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